Christoffel Words and Markoff Triples

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Uniqueness Conjecture for Markoff Triples

ν(θ) = inf{c : |θ − p/q| < c/q for infinitely many reduced fractions p/q}. The set of values {νi} of the Markoff function in the range ν(θ) > 1/3 is called the Markoff spectrum [7], which is a denumerable infinite set and νi ↓ 1/3. An other definition of the Markoff spectrum uses the integer solutions of the Diophantine equation x + y + z = 3xyz. (1) A solution (x, y, z) to this equation with 0...

متن کامل

Markoff–rosenberger Triples in Geometric Progression

We study solutions of the Markoff–Rosenberger equation ax + by + cz = dxyz whose coordinates belong to the ring of integers of a number field and form a geometric progression.

متن کامل

Markoff-Rosenberger triples in arithmetic progression

Article history: Received 22 March 2012 Accepted 12 November 2012 Available online 27 November 2012

متن کامل

Christoffel Words and the Calkin-Wilf Tree

In this note we present some results on the Calkin-Wilf tree of irreducible fractions, giving an insight on the duality relating it to the Stern-Brocot tree, and proving noncommutative versions of known results relating labels of the CalkinWilf trees to hyperbinary expansions of positive integers. The main tool is the Christoffel tree introduced in a paper by Berstel and de Luca.

متن کامل

On a generalization of Christoffel words: epichristoffel words

Sturmian sequences are well-known as the ones having minimal complexity over a 2-letter alphabet. They are also the balanced sequences over a 2-letter alphabet and the sequences describing discrete lines. They are famous and have been extensively studied since the 18th century. One of the generalization of these sequences are the episturmian sequences, introduced by A. de Luca [dL97a] and studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integers

سال: 2009

ISSN: 1867-0652

DOI: 10.1515/integ.2009.027